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ABSTRACT: The bending properties of composite mate-
rials are often characterized with simply supported beams
under concentrated loads. The results from such tests are
commonly based on homogeneous beam equations. For lam-
inated materials, however, these formulas must be modified
to account for the stacking sequence of the individual plies.
The horizontal shear test with a short-beam specimen in
three-point bending appears suitable as a general method of
evaluation for the shear properties in fiber-reinforced com-
posites because of its simplicity. In the experimental part of
this work, the shear strength of unidirectional-glass-fiber-

reinforced epoxy resin composites was determined in differ-
ent fiber directions with the short-beam three-point-bending
test. Also, the elastic constants and flexural properties of the
same materials were determined from bending experiments
carried out on specimens in the 0, 15, 30, 45, 60, 75, and 90°
fiber directions with high span–thickness ratios. © 2004 Wiley
Periodicals, Inc. J Appl Polym Sci 93: 63–74, 2004

Key words: unidirectional-fiber-reinforced epoxy compos-
ite; short-beam test; three-point bending test; elastic con-
stants

INTRODUCTION

Knowledge of the shear properties is very important
whenever the interfacial bonding or matrix failure of a
composite material is critical, such as in a composite
structure subjected to compression loading. However,
because so many methods have been developed to
measure shear, there is a great deal of confusion about
which shear method should be used. Ideally, a test
method should produce pure shear. However, this is
difficult to attain because of coupling effects. In addi-
tion to producing pure shear, a good shear test
method should give reproducible results, provide all
shear properties, require no special equipment for
specimen preparation, be capable of being performed
on readily available testing machines, and have a sim-
ple data reduction procedure.

Numerous methods are available for measuring shear
properties.1 Among them, the torsional shear of a thin,
walled tube, the torsional shear of a unidirectional com-
posite rod, the tensile shear of �45° off-axis laminates,
the tensile shear of 10° off-axis laminates, the interlami-
nar tensile shear of a grooved laminate, and the inter-
laminar shear of a short beam are used mostly.

The short-beam shear test has become a widely used
method for characterizing the interlaminar failure re-
sistance of fiber-reinforced composites. This test
method involves loading a beam under three-point
bending (see Fig. 1) with certain dimensions so that
interlaminar shear failure is induced.

The simplicity of the test method makes it a very
popular screening tool. The experimental requirements
for such a test on a fiber-reinforced composite are sim-
pler than those for a tensile test because the effects of
flaws and geometrical stress concentrations are less se-
vere. In addition, a rectangular cross-sectional specimen
can be used, and this leads to ease of sample preparation.
Also, there is no need to provide end tabs on a reduced
cross section to ensure failure away from the grips.2

In a general review of material evaluation bending
tests, Mullin and Knoell3 discussed the theoretical ori-
gins of L/t ratios (where L is the span length and t is the
nominal thickness) and the effects of material variables
and specimen defects such as voids, and Westwater4

observed that specimens with small L/t ratios often fail
by cracks running out to, or past, the support nose and
also that the amount of overhang may affect the mode of
failure. Daniels et al.5 demonstrated representative fail-
ure modes of carbon-fiber/epoxy-resin composites in
short-beam tests but indicated that the same behavior
would not necessarily occur for other combinations of
materials. Whitney and Browning6 referred to the limi-
tations of the short-beam shear method.
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The applicability of the short-beam shear test has
been questioned by other researchers. Berg et al.7 used
an elastoplastic finite-element code to perform a stress
analysis on an orthotropic short-beam shear specimen.
Sandorff8 studied the effect of stress concentrations on
the elastic response of orthotropic beams. His results
showed that the short-beam shear configuration yields
stress-concentration effects that are never fully dissi-
pated, as St. Venant’s principle is not satisfied in a
highly orthotropic beam of a low span-to-depth ratio.

In this article, we present the results of a experimen-
tal study for the evaluation of the interlaminar shear
strength of epoxy-resin/glass-fiber composites with
fiber directions ranging from 0 to 90° according to
ASTM D 2344.9 Also, the elastic constants and flexural
properties of the same material were determined from
bending experiments carried out on specimens with
large L/t ratios.

ANALYSIS

At small L/t ratios, an orthotropic beam of low shear
strength is expected to fail by shear at the neutral axis.
At progressively larger L/t ratios, the mode of failure
becomes flexural. In this situation, the outer fibers fail
in tension if, as is usual, the tensile strength is less than
the compressive strength. There is an intermediate
range of L/t ratios in which the behavior is transi-
tional, and the mode of failure may vary from sample
to sample or assume aspects of both modes as defor-
mation proceeds. As shown in Figure 1, which illus-
trates the mechanics of the test method, the specimen
is supported by the reaction noses and the load is
applied at a constant speed through the loading nose.
The stress at any point in the beam can be calculated
to a first approximation with mechanics-of-materials
theory. This theory is based on the necessary condi-
tions for static equilibrium, which pertains here be-
cause the rate of deformation is small.

The basic assumptions of the theory are as follows:

1. The external forces are applied at thin lines and
not distributed over finite areas.

2. �x � y (�x is the axial strain and y the vertical to
the plane xz axis).

3. �y � �z � 0 (�y and �z are the transverse normal
stresses).

4. �x � E�x (where �x is the longitudianl normal
stress and E the elastic modulus).

5. �xz is independent of y (where �xz is the interlami-
nar shear stress).

6. �xy � 0 (�xy is the in-plane shear stress).

After the equilibrium conditions are applied for
stresses �x and �xz, these two major components of the
stress can be obtained. �x has its maximum tensile or
compressive value at the lower or upper point of the
specimen:

�x �
3PL
2bt2 (1)

�xz, which is maximum at the neutral axis, is given by

�xz �
3P
4bt (2)

where P is the load and b is the width of the specimen.
Because the theory involves many approximations,

SH is used to denote the apparent short-beam shear
strength given by eq. (2). The two stresses are related:

�x

�xz
�

2L
t (3)

When the shear stress is constant, the flexure stress
varies linearly with L/t, and when the flexure stress is
constant, the shear stress varies as an hyperbolic func-
tion of L/t.

If in an experiment the shear stress at failure is �F

and the flexure stress (tensile or compressive stress) at
the same load is �F, eq. (3) can be rewritten as

�F

�F
�

2L
t (4)

if elastic behavior is assumed.
If the failure stress in shear is �M (the maximum

shear stress) and the failure stress in flexure is �M (the
maximum flexural stress), the failure of the specimen
in shear occurs when

�F � �M and �F � �M (5)

From eq. (4), we have

�F

�F
�

�M

�M
or

�M

�M
�

t
2L (6)

If the failure of the specimen is in flexure, then

�F � �M and �F � �M (7)

Figure 1 Three-point-bending test.
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From eq. (4), we have

�F

�F
�

�M

�M
or

�M

�M
�

t
2L (8)

If we assume that for a material the ratio of �M to �M

is constant, that is,

�M

�M
� C (9)

the beam will fail in shear rather than in flexural
tension in compression if

C �
2L
t (10)

Therefore, C can be theoretically estimated by the
calculation of the parameter 2(L/t) for a composite
and by the observation of the types of failure occur-
ring. For shear failure (debonding at the middle of the
thickness), this ratio should be below the value of C,
and for flexural (surface) failure, it should be above
the value of C. However, the composite strength for a
fiber angle (�) of 0° can be calculated with the rule of
mixtures:

�c � �f�f 	 ��m�1 
 �f� (11)

where �c and ��f denote the failure stresses of the
composite and fibers, respectively; ��m is the matrix
stress when the fiber failure strain is reached; and �f is
the fiber content.

According to the Bernouilly–Euler theory, the elas-
tic deflection arising from a flexural stress in a rectan-
gular beam (�B) is (Fig. 1)

�B �
PL3

48ExIy
�x

L��3 
 4
x2

L2� 0 � x � L/2 (12)

where Iy denotes the moment of inertia of the section.
The elastic shear deflection (�s) in the same beam is

�s �

Px

2GxzA
0 � x �

L
2 (13)

where Gxz is the interlaminar shear modulus, A is the
area of the section, and 
 is its shape factor (6/5 for
this case). The total deflection (�t) is the sum of these
two components:

�t � �B 	 �s �
PL3

48ExIy
�x

L��3 
 4
x2

L2� 	

Px

2GxzA
(14)

Thus, the deflection at midpoint M (�M), given that A
� bt and Iy � (bt3)/12, is

�M � �max �
PL3

48ExIy
�1 	

12
EIy

GxzAL2�
�

PL3

48ExIy
�1 	

6
5 � Ex

Gxz
�� t

L�
2� (15)

The ratio of the two deflections is

�s

�B
�

6
5 � Ex

Gxz
�� t

L�
2

(16)

Gxz can be evaluated from eq. (15) as follows:

Gxz �
3PL

10bt��max 

PL3

48ExIy
� (17)

EXPERIMENTAL

The unidirectional-glass-fiber composite used in this
study consisted of long E-glass fibers (Permaglass XE
B5/1) embedded in an Araldite MY 750 HT 972 epoxy
resin based on diglycidyl ether of bisphenol A to-
gether with an aromatic amine hardener. The glass
fibers had a diameter of 12 � 10�6 m and were con-
tained in a volume fraction of �f � 0.65.

�f was determined, as customary, through the igni-
tion of samples of the composite and the weighing of
the residue; this gave the weight fraction of glass as mf

� 79.6 � 0.28%. This and the measured values of the
relative densities of the glass (�f � 2.55) and epoxy
resin (�m � 1.20) gave the �f value of 0.65.

Rectangular specimens, for which � was 7 cm and
b was 1.5 cm with L � 3.2 cm and t � 0.60 cm
(varying from 0.55 to 0.65 cm), were used during the
short-beam-bending experiments according to
ASTM D 2344. However, for the determination of
the elastic constants, rectangular specimens, for
which � was 20 cm and b was 2 cm with L � 10 cm
and t � 0.60 cm, were used during three-point-
bending experiments according to ASTM D 790.
Two Kyowa KFP-2C1-65 strain gauges (horizontal
and perpendicular) with a gauge length of 2 mm
and a gauge factor of 1.99 were put on the speci-
mens to determine the strains. Four specimens for
each of the fiber directions (0, 15, 30, 45, 60, 75, and
90°) were used during the experiments, which were
carried out at 0.2 cm/min for all cases on an Instron
testing machine.
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RESULTS AND DISCUSSION

Table I contains the mean experimental values for the
load (PF), the normal stress (�F), and shear stress (�F) at
failure of the composite material for � tested in three-
point bending for L/t � 5. The same results for L/t � 5
and L/t � 16 are illustrated in Figures 2 and 3, respec-
tively, versus � of the composite. Both the normal and
shear stress show abrupt decreases up to 45°, and then
up to 90° the decreases become smooth. Also, al-
though for L/t � 16 the normal stress values (�) are
greater than the respective values for L/t � 5, in the
case of the shear stress (�), there is an opposite effect;
that is, the values for L/t � 5 are greater than those for
L/t � 16. This means that the apparent shear strength
depends strongly on the L/t ratio.

Figures 4 and 5 illustrate the boundary of shear
and tensile (or compressive) flexural failures for L/t
� 5 and L/t � 16, respectively, as denoted in eqs. (9)
and (10), which are derived from the theory. In each
figure, the straight line represents the boundary
between shear and tensile flexural failures accord-
ing to inequality (10). The experimental data show
good agreement with the theory in both cases be-
cause the shear failures occurring for L/t � 5 lie
above the straight line (Fig. 4), whereas the tensile
flexural failures occurring for L/t � 16 lie below

this line (Fig. 5). From this, it can be concluded
that the shear strength depends strongly on the
L/t ratio even for shear failures. This effect could be
due to local stress concentrations (at the ends of
the specimen and at the noses), which are ignored in
the elementary theory. Alternatively, it could be a
combined stress effect. If the shear strength were
enhanced by the presence of a transverse compres-
sive stress, then an increased value of SH at the
smallest value of L/t would be expected. The shear

TABLE I
Experimental Values for �F and �F for L/t � 5

	 (°) t (mm) b (cm) PF (N) �F (MPa) �� F (MPa) �F (MPa) ��F (MPa)

1 0 5.8 1.55 6200 570.75 541.42 51.72 49.06
2 5.8 1.55 6001 552.34 50.06
3 5.8 1.55 6550 525.06 47.58
4 5.8 1.55 6420 517.54 46.92
5 15 5.8 1.54 5270 488.29 500.91 44.25 44.09
6 5.6 1.53 5180 514.84 45.34
7 5.6 1.53 4940 494.19 43.24
8 5.5 1.52 4850 506.31 43.51
9 30 5.9 1.54 3020 270.41 279.63 24.93 25.35

10 5.8 1.54 3110 288.15 26.11
11 5.7 1.56 2720 257.59 22.94
12 5.8 1.51 3200 302.38 27.41
13 45 6.1 1.55 1440 119.84 129.46 11.42 12.49
14 6.2 1.55 1790 144.21 13.97
15 6.2 1.41 1310 116.01 11.24
16 6.2 1.45 1600 137.79 13.35
17 60 6.2 1.54 1070 86.76 94.44 8.41 9.11
18 6.2 1.53 1070 87.33 8.46
19 6.2 1.52 1180 96.94 9.32
20 6.3 1.53 1350 106.71 10.51
21 75 6.2 1.55 1020 82.17 79.89 7.96 7.67
22 5.9 1.56 1000 88.39 8.15
23 6.4 1.56 920 69.11 6.91
24 6.2 1.54 660 — —
25 90 5.8 1.68 930 78.98 71.14 73.89 6.65
26 6.0 1.56 750 64.10 60.10
27 6.1 1.58 820 66.95 63.81
28 5.8 1.49 780 74.69 67.69

Figure 2 Variation of �x and �xz versus � for L/t � 5.

66 SIDERIDIS AND PAPADOPOULOS



failures in the specimens tested occurred with the
plane of shear near the neutral axis, that is, at t/2,
and exceptions to this may be due to the specimen
preparation procedure, which can leave resin-rich
areas.

The interlaminar shear strength depends on the fi-
ber direction, and it decreases as � varies from 0 to 90°.
On the contrary, it is expected to be essentially inde-
pendent of the fiber volume fraction; this indicates
that, at the plane of shear, the existence of proportion-
ately more fibers nearby does not affect the strength
for shear failure.

It is evident from eq. (4) that when the shear stress
(�) is a constant, the flexure stress will vary linearly
with L/t, and when the flexure stress is a constant, the
interlaminar shear stress will vary as a hyperbolic
function of L/t.

To evaluate the composite flexure strength for �
� 0, let us consider eq. (11) and Figure 6. With
values of �f � 1250 MN/m2 and �f � 17 � 10�3 for
the failure stress and strain of the glass fibers and ��m
� 56 MN/m2 for the epoxy resin stress when fiber

failure strain is reached, the value of �c � 832.1
MN/m2 can be obtained for the composite strength
for �f � 0.65. This shows some discrepancy with the
respective mean experimental value appearing in
Table II.

A factor producing confusion in the interpretation
of the results is that, with this high fiber volume
fraction �f � 0.65 and L/t � 5, indentation by the
central loading nose caused compressive failure

Figure 3 Variation of �x and �xz versus � for L/t � 16.

Figure 4 Boundary of shear and tensile (or compressive)
flexural failure for L/t � 5.

Figure 5 Boundary of shear and tensile (or compressive)
flexural failure for L/t � 16.

Figure 6 Stress–strain diagram for the fiber and matrix
material.
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zone. This preceded shear failure and, in some
cases, appeared to initiate shear failure, as shown in
Figure 7.

Figure 8 illustrates P–� diagrams for various �
values (0 –90°) obtained from short-beam three-
point-bending experiments, that is, for L/t � 5.
There is a large decrease in the failure load (or
failure moment) when � increases from 0 to 90°, and
the deflection at fracture decreases as expected.
However, if we look carefully, we can see that the
slope of the curves in these diagrams does not show
large discrepancies. That is, there is not a significant
difference in the variation of � versus �. There is a
maximum at � � 45°.

Figure 9 presents P–� diagrams for � values varying
from 0 to 90°, as obtained from three-point-bending
experiments for L/t � 16. The values of � are much
higher than the respective ones for L/t � 5, and for the
two types of bending, the concave and convex sides of
the respective P–� curves are opposite.

Figure 10 presents P–� diagrams for various � val-
ues (0–90°), as obtained from three-point-bending ex-
periments for L/t � 16. The P–� curves have a more
linear behavior at low and high � values and show a
maximum curvature for � � 45°.

From these diagrams, the experimental values for
the elastic modulus (Ex) and Poisson ratio (�xy) for
various values of � can be obtained. These values
appear in Figure 11. As expected, Ex decreases as �
increases from 0 to 90°. However, there is a slight
increase for � � 60° and � � 75° and then a slight
decrease, after which Ex is almost the same for � � 90°
and for � � 45°. Also, Ex � 41.02 GPa for � � 0° seems
much lower than expected, and this can be verified
through the calculation of the elastic modulus by the
mixture law formula, EL � Ef�f 
 Em(1–vf), where EL is
the longitudinal modulus. For the composite material
used, the elastic moduli for the fiber and matrix are Ef

� 72 GPa and Em � 3.5 GPa, respectively, and �f is 0.65
as previously mentioned. This formula yields the
value EL � 48.03 GPa, which is much higher than the
experimental one.

The values of �xy follow the expected behavior. They
increase when � increases, they obtain a maximum,
and then they decrease again as � goes to 90°. The
experimental value of �xy for � � 0° does not seem to
be significantly different from what was expected, and
this can be verified by the calculation of the longitu-
dinal Poisson ratio (�LT) with the mixture law formula:
�LT � �f�f 
 �m�m. For the composite, the Poisson ratios
for the fiber and matrix are �f � 0.20 and �m � 0.36,
respectively. For �f � 0.65, this formula yields �LT

� 0.255, which is slightly higher than the experimental
value. The low value of Ex for � � 0° leads to the
nonvalidity of the Maxwell law, that is, EL/�LT � ET/
�TL [where EL � (Ex)��0°, ET � (Ex)��90°, �LT

� (�xy)��0°, and �TL � (�xy)��90°], which shows a large
discrepancy.

This fact led us to investigate the likelihood of an
error due to the misalignment of the strain gauges or
to the cutting of the specimen. Thus, if it is assumed
that there is such an error of � � 5°, the strains will be
calculated with eq. (A.1) as follows.

From Figure 10, for � � 0° and for P � 250 N, �x

� 2351 � 10�6, �y � �587 � 10�6, and �xy � 0, we
obtain ��x � 2329 � 10�6 and ��y � 565 � 10�6, which,
by the use of eq. (A.1) and the definitions of Ex and �xy,
yield Ex � 41.4 GPa and �xy � 0.243, which are not too
much different from the previous experimental val-
ues. This shows that the discrepancy is not due to the
assumed error. It may instead be due to the influence
of a possible resin-rich layer in the composite, which is
more important in the case of bending than in the
case of tension, but is mainly due to the variation of
the bending modulus (Eb) with L/t, which tends as-
ymptotically to the value of Ex obtained in tension
for very large values of L/t (e.g., L/t � 60, as stated in
ref. 10).

Indeed, as stated in the appendix, if it is assumed
that a resin-rich layer exists on either or both surfaces

Figure 7 Example of the shear failure mode.

68 SIDERIDIS AND PAPADOPOULOS



of a composite of thickness tRRL � �t � 0.25 mm, in the
total mean thickness of 6 mm of the specimens used
during the experiments, with eqs. (A.2), (A.5), and
(A.6) and with the previously calculated theoretical
value EL � 48.03 GPa, the moduli E�t � 46 GPa and E�b
� 42 GPa can be obtained. This shows how such a
resin-rich layer influences Eb.

To verify the effect of L/t on the discrepancy
between the longitudinal values of Eb and the ex-
tensional modulus (Et), we carried out a tensile
experiment on a similar specimen with � � 0°, L
� 25 cm, b � 1.9 cm, and t � 6.1 mm. From the
diagram of Figure 12, EL was calculated to be 48.20
GPa, a value in very good agreement with the the-
oretical value found previously. The experimental
value of �LT, 0.252, is too close to the respective
experimental value obtained from bending experi-
ments, which already was in good agreement with
the theoretical value. Thus, it can be expected that
with increasing L/t, Eb will approach the tensile
modulus, as stated in ref. 10.

Eb was also estimated from the deflection with eq.
(12) and the P–� diagrams for various � values in
Figure 9. The results are presented in Figure 13.
These results show some discrepancy for � � 0° and
� � 90° in comparison with those derived from
bending experiments with strain-gauge measure-
ments. In particular, the value of Ex for � � 0°,
which is around 38 GPa, shows a large discrepancy
in comparison with the respective theoretical value
and that derived from the tensile experiment. The
value for � � 90°, which is around 16 GPa, seems
more realistic because the Ex curve does not
present a slight increase for this angle as the Ex

curve does that was derived from strain-gauge mea-
surements.

To determine the cause of this discrepancy, let us
consider eqs. (15) and (16). It is obvious that because
the Gxz/Ex ratio is much lower for composites than
for metals, the shear deformation is more significant
in these materials, especially when L/t is low, as can
be observed from eq. (16). Thus, �s has a larger

Figure 8 P–� diagrams for various values of � for L/t � 5.
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Figure 9 P–� diagrams for various values of � for L/t � 16.

Figure 8 (Continued from the previous page)
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contribution to �t when Ex/Gxz and t/L are high, as
can be observed from eq. (15). For L/t ratios of 5, 16,
32, and 40, the contribution becomes 0.048(Ex/Gxz),
0.0047(Ex/Gxz), 0.0012(Ex/Gxz), and 0.0008(Ex/Gxz),
respectively; that is, there is an increase of 10, 40, or
60 times, respectively. Because Ex for � � 0° has a
large value, the ratio of the two moduli is high, and
the contribution of the last term in eq. (15) is more
important. This explains the fact that Ex shows a
large discrepancy for � � 0° when evaluated from
the deflection. It can be concluded that for the ap-
parent value of Eb, which can be found under the
assumption that �t is due mainly to bending, to be as
nearly equal to the true value of Eb as possible, �s

must be very low (�s/�B � 1).
Gxz, calculated from eq. (17) with the values given

in Figure 8 and with the specimen characteristics, is
0.35 GPa. This value also shows a discrepancy with
the expected value, and this can be explained as

previously by a consideration of the shear and bend-
ing deflections.

CONCLUSIONS

In this study, we have observed the following:

Both the normal stress and shear stress in bending
depend strongly on the L/t ratio. This effect for
shear failures is not easily predicted. For tensile
failures, it is reasonably well predicted by the
mechanics-of-materials theory.

The shear fracture surface is at the interface or
through the resin and not through the fibers.

The interlaminar shear strength of the glass-fiber/
epoxy-resin composite studied here, for �f � 0.65,
was around 50 MN/m2.

Figure 10 P–� diagrams for various values of � for L/t � 16.
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Figure 11 Ex and �xy versus �.

Figure 10 (Continued from the previous page)
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The longitudinal value of Eb obtained experimen-
tally showed a discrepancy from that expected
and from the theoretical value; this can be
attributed to the low value of L/t used, which
did not give results too close to the tensile
modulus also obtained experimentally.

The longitudinal value of Eb obtained from the
deflection measurements also showed a signifi-
cant discrepancy in comparison with the theoret-
ical value.

APPENDIX

Strain transformation

�
��x
��y

�x�y�

2
�

� � cos2� sin2� 2 sin � cos �
sin2� cos2� �2 sin � cos �

�sin � cos � sin � cos � cos2� 
 sin2�
�

� �
�x

�y

�xy

2
� (A.1)

Influence of resin-rich layers

The Et and Eb values of a laminate composite are
supposed to be equal when it is composed of many
identical layers. When there is some nonuniformity in
the laminate, Et and Eb will generally be different. In
particular, a resin-rich layer on either or both of the
surfaces can significantly affect Eb. Because Et of the
fiber is much greater than that of the resin, the direct
contribution of the latter to the ability of a fabric-
reinforced laminate to resist extensional and flexural
deformation is usually small and can be neglected as a
first approximation. Therefore, layers of resin on the

outer surface(s) of a laminate have little effect on the
deflection of a laterally loaded beam or plate. How-
ever, surface resin-rich layers do contribute to the
laminate thickness used in computing Et and Eb and
can have a significant effect on the computed value of
Eb.

Let us consider a laminated composite of total thick-
ness t that has a resin-rich layer on either or both
surfaces of combined thickness tRRL � �t. The thick-
ness of the part of the composite containing the rein-
forcing fiber is

t0 � t 
 tRRL � t 
 �t (A.2)

As discussed previously, the contribution of the resin-
rich layers to resisting deflection can be ignored, to a
first approximation, unless they are extremely thick.
That is, the lateral deformation of a laminate of thick-
ness t having resin-rich layers of total thickness tRRL

� �t is almost the same as that of a laminate of
thickness t0 having no resin-rich layers under the same
load. Similarly, the extensional deformations are the
same.

Let us denote the extensional and bending moduli
of a laminate of thickness t as E�t and E�b, respectively.
The corresponding properties of the laminate without
resin-rich layer(s) are Et and Eb, respectively. Deflec-
tions under load P being equated, the following rela-
tionship can be obtained from eq. (15):

E�b � Eb� t0

t �
3

(A.3)

Similarly, by equating the strains under the same ex-
tensional load, we find that

E�t � Et� t0

t � (A.4)

Figure 12 P–� diagram obtained from a tension experiment
at � � 0°.

Figure 13 Ex versus � according to deflection measure-
ments.
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With eq. (A.2), the previous equations can be rewrit-
ten, in terms of the total thickness and resin-rich-layer
thickness, as follows:

E�b � Eb�1 

�t
t �

3

� Et�1 

3�t

t � (A.5)

E�t � Et�1 

�t
t � (A.6)

The resin layer has a severe effect on the moduli, and
this effect is much more important on Eb. The resis-
tance to bending deformation of the two laminates is
the same, but because of the extra resin, the modulus
of the thicker one is lower. In other words, as eq. (12)
shows, the deflection under a lateral load is governed

by the beam flexural rigidities E�bt
3 and Ebt0

3, which are
equal, although the moduli E�b and Eb differ.
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